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ABSTRACT

The Lincoln Boolean Synthesizer (LBS) creates custom integrated circuits

from boolean logic equations. The currently supported integration technology

is a fully customizable CMOS process with 5 micron channel width, P-tub and,

one level of metal. This document describes the capabilities of LBS and

provides essential information for operating LBS and an LBS simulator which

has also been developed.,
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1. INTRODUCTION

The Lincoln Boolean Synthesizer (LBS) creates custom integrated circuits

from boolean logic equations. The currently supported integration technology

is a fully customizable CMOS process with 5 micron channel width, P-tub and,

one level of metal. A simulator is provided.
1

2. LBS SPECIFICATION

An LBS specification consists of a set of boolean logic equations called

0 a "network." The network will specify input, output, and logic. Network

inputs and outputs are so-called "named" items. As such, they can be simply

referenced in the logic specification. Network inputs are driven by external

circuitry and network outputs drive external circuitry. When an LBS

generated circuit is fabricated, inputs and outputs will be bonded to leads

of the chip.

2.1 Boolean Expressions

The backbone of LBS specifications is the boolean expression. A boolean

expression consists of an operation and a list of arguments, viz:

(or a b)

This expression will construct circuitry (called a "gate") to or the items

named a and b . Other supported operators are nor, and, nand, not,

and xor. Arguments may be named items such as network inputs, or they may be

other expressions, viz:

(or a (or c )).

1 An up-to-date copy of this document is available on the Lincoln Laboratory

RVLSI VAX computer as /usr/local/doc/lbs.
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In this case a gate will be constructed to evaluate the xor of c and d.

Another gate will or that result with a. There is no practical limit to this

nesting or cascading of operations. Incidentally, all the operators

except not accept any number of arguments, not just two.

2.2 Outputs and Internals

The results of boolean expressions can be named as an output of the net-

work:

(out a (or b c))

This creates a network output named a which is attached to the gate evaluat-

ing the or of b and c. Note that since it is an output, a is a named value

and can be used as such in other logic expressions.

Sometimes it is useful to create a named value which is neither an input

nor an output of the network. This name will be referenced internally, some-

what like a local variable in a subroutine.

(setq a (or b c))

creates a named value which is neither input nor output but can be used in

other logic expressions as though it was.

2.3 Observation on Efficiency

Let us consider the two networks:

((setq teup (nor a b))
(out ol (or temp c))
(out o2 (xor tem d)))

and

((out ol (zor (nor a b) c))
(out o2 (xor (nor a b) d)))

2



Logically these are equivalent; however, it would seem that by using temp the

first specification creates 3 gates (two xors and one nor), while the second

specification creates 4 gates (two xors and two nors). There is an interest-

ing analogy here between this IC design example and simi" Ir controversy

between standard procedural languages and the so-called "applicative" or

"functional" languages. What actually happens is that LBS

works a little harder on the second specification, detects that two identi-

d cal nor gates are being called for, and generates the same layout for both

specifications.

3. INTERFACE TO THE THE OUTSIDE WORLD

In the present version of LBS, input and output leads will appear on

opposite sides of the chip. The order of the inputs and outputs both depend

on their order or appearance in the specification. Inputs can be ordered

independently of their appearance in out and setq equations by use of an

expression containing only the input name. For example, the network

((out bnorc (nor b e))
(out nota (not a)))

would order the inputs b, c, and a. However, the network

(a
b
C
(out bnorc (nor b c))
(out nota (not a)))

would order the inputs a, b, and c. There would be no difference in the num-

ber of gates.

4. THE NAME OPERATOR

The obsolete operator naum is supported for historical reasons. It is



documented so that very old examples may be understood. Anywhere that a

"named" item appears in a boolean expression a name expression can be

substituted. For example:

(or a (xor c d))

Is equivalent to

(or (name a) (xor (name c) (name d)))

5. AN EXAMPLE

The following code creates a master-slave flip-flop.

((aetq mwl (nor (and (not Inl) phla) oulbar clear))
(setq oalbar (nor (and Inl phia) oml))
(out oll (nor (and omlbar phdb) oslbar clear))
(setq olbar (nor (and owl phlb) osl))
(setq phla (nor clock phlb

(and omlbar pb1b)
(and oal phlb)))

(setq phdb (nor (not dock) phia
(and (not inl) phia)
(and i1 phda))))

The equivalent logic diagram is Fig. 1. A two phase clock is generated

internally from the single clock input. The master flip-flop tracks the

input during phla, and is fixed during phdb. The slave is fixed

during phla, and transfers the output of the master during phdb. The

circuit which internally generates two phase clock ( phia and phdb) was

synthesized by writing down the logic expression for figure 7.7 in

Introduction to VLSI Systems by Mead and Conway [1]. Figure 2 is the

resultant layout.

6. OPERATION

Make sure that your $path includes /usr/vlsi/bin. If you do not under-

stand this, please contact someone who knows something about UNIX. Create

4
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the specification in a file <file-name>.lbs. Issue the command

lb. <file-nain>

This will create a cif file <file-name>.cif which can then be operated on by

the standard cif oriented tools (node extractors, rules checkers, display

programs, etc.). It will also create a file <file-name>.stat with informa-

tion about the number of gates and so on. If you wish to invoke the simu-

lator, issue the command:

lb. <file-nam> sie

If you wish to simulate a design without creating cif, issue the command:

lb. Oile-nam> 613 nocif

7. THE SIMULATOR

A simulator has been written for use with smart terminals like the

Concept lOOs. When invoked, the simulator will clear the screen and present

the input and output signals on the screen. Named input signals appear in

the left-hand column, named output signals appear in the right-hand column.

Next to each signal name is its current value, initially unknown. A long

prompt will appear at the bottom of the screen. When the cursor is next to

the prompt ">', you may enter a command.

Useful commands are:

q Quit the simulator.

I Read the remainder of the line for name arguments (see next
paragraph). All the specified signals will be set to the
value 1. If the simulation is in autopropagate mode
(default, also see the P command), then the display will be
updated as per the new values.

o Read the remainder of the line for name arguments (see next

paragraph). All the specified signals will be set to the
value 0. If the simulation is in autopropagate mode

7
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(default, also see the P command), then the display will be
updated as per the new values.

z Read the remainder of the line for arguments (see next
paragraph). All the specified signals will be undefined
(hi-impedance, hence z). If the simulation is in
autopropagate mode (default, also see the P command),
then the display will be updated as per the new values.

p Propagate the input signals to the output. This will occur

irrespective, and without effecting, the autopropagate mode
(see the P command).

P Toggle the autopropagate mode. If the autopropagate mode is
on, then each change to an input will be immediately
reflected in the display. If the autopropagate mode is off,
then propagation is delayed (and the display is frozen)
until a p command is issued.

T Toggle the trace mode. When the trace mode is on, the display
presents intermediate value information as signals propagate
through the network. Trace mode assumes unit gate delay for
all gates, a poor, though simple assumption. The trace mode
is Initially off.

4 Save the current simulation state in the file
<file-name>.sim. If the user appends an argument to the s
command, the current simulation state is saved in
<argument>.sim.

X Get the simulation state from the file Ofile-name>.sim. If
the user appends an argument to the g command, the
simulation state is loaded from the file (argument>.sim.

The name arguments are any named input or output signals appearing in

the display. In addition, an argument of I will be expanded to all input

signals, and 0 to all ouput signals. These letters (and G and A) are not

recommended signal names. In addition, other commands and information are

available to LBS experts.
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